Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.307
Filtrar
1.
Nature ; 629(8010): 121-126, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632395

RESUMEN

The neural crest is an embryonic stem cell population unique to vertebrates1 whose expansion and diversification are thought to have promoted vertebrate evolution by enabling emergence of new cell types and structures such as jaws and peripheral ganglia2. Although jawless vertebrates have sensory ganglia, convention has it that trunk sympathetic chain ganglia arose only in jawed vertebrates3-8. Here, by contrast, we report the presence of trunk sympathetic neurons in the sea lamprey, Petromyzon marinus, an extant jawless vertebrate. These neurons arise from sympathoblasts near the dorsal aorta that undergo noradrenergic specification through a transcriptional program homologous to that described in gnathostomes. Lamprey sympathoblasts populate the extracardiac space and extend along the length of the trunk in bilateral streams, expressing the catecholamine biosynthetic pathway enzymes tyrosine hydroxylase and dopamine ß-hydroxylase. CM-DiI lineage tracing analysis further confirmed that these cells derive from the trunk neural crest. RNA sequencing of isolated ammocoete trunk sympathoblasts revealed gene profiles characteristic of sympathetic neuron function. Our findings challenge the prevailing dogma that posits that sympathetic ganglia are a gnathostome innovation, instead suggesting that a late-developing rudimentary sympathetic nervous system may have been characteristic of the earliest vertebrates.


Asunto(s)
Linaje de la Célula , Ganglios Simpáticos , Cresta Neural , Neuronas , Petromyzon , Sistema Nervioso Simpático , Tirosina 3-Monooxigenasa , Animales , Cresta Neural/citología , Cresta Neural/metabolismo , Ganglios Simpáticos/citología , Ganglios Simpáticos/metabolismo , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/fisiología , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/genética , Neuronas/citología , Neuronas/metabolismo , Dopamina beta-Hidroxilasa/metabolismo , Dopamina beta-Hidroxilasa/genética , Vertebrados , Evolución Biológica , Norepinefrina/metabolismo
2.
Int. j. morphol ; 42(1): 59-64, feb. 2024. tab
Artículo en Español | LILACS | ID: biblio-1528831

RESUMEN

Las terminologías son utilizadas como instrumento lingüístico que permite la transmisión de conocimiento de manera precisa y sin ambigüedades en el ámbito de las ciencias. Los lineamientos de la Federative International Programme for Anatomical Terminology (FIPAT) refieren que la denominación de nombres estructurales debe ser descriptivos e informativos. Este estudio analiza las raíces lingüísticas que componen el término Neuron parvum valde fluorescens vigente en Terminologia Histologica y el término Neuron parvum fluorescens vigente en Terminologia Neuroanatomica. Las células pequeñas intensamente fluorescentes son neuronas que se encuentran en el sistema nervioso autónomo, distribuidas en los ganglios simpáticos. Estas células presentan sinapsis aferentes con terminales nerviosas simpáticas preganglionares y sinapsis eferentes con las dendritas de las neuronas posganglionares. Su función es regular la transmisión ganglionar, actuando como interneuronas con señalización paracrina y endocrina. Además, se caracterizan por ser células fluorescentes, que expresan catecolaminas; serotonina, noradrenalina y dopamina. Se realizó una búsqueda en Terminologia Histologica y Terminologia Neuroanatomica, con una traducción de los términos al español. Además, la búsqueda se complementó en un diccionario etimológico en inglés para los términos correspondientes. Esta investigación encontró diferencia entre la traducción del latín al español del término fluorescens, quien posee un origen etimológico muy diferente a su significado en español. El término Neuron parvum valde fluorescens en Terminologia Histologica y el término Neuron parvum fluorescens en Terminologia Neuroanatomica, identifican a la misma estructura. Se sugiere reemplazar ambos términos por Cateconeuron ganglionare, entregando así una correcta descripción de este tipo de neurona, considerando su ubicación y función. Además, de esta manera ser un término concordante en latín para su incorporación en Terminologia Neuroanatomica y Terminologia Histologica.


SUMMARY: Terminologies are used as a linguistic tool to convey knowledge in a precise and unambiguous manner in science. The guidelines of the Federative International Programme for Anatomical Terminology (FIPAT) state that the names given to structures should be both descriptive and informative. This study analyses the linguistic roots of the term Neuron parvum valde fluorescens in Terminologia Histologica and the term Neuron parvum fluorescens in Terminologia Neuroanatomica. Small intensely fluorescent cells are neurons found in the autonomic nervous system, distributed in the sympathetic ganglia, they have afferent synapses with preganglionic sympathetic nerve terminals and efferent synapses with the dendrites of postganglionic neurons, whose function is to regulate ganglionic transmission, acting as interneurons with paracrine and endocrine signalling. They are also characterized as fluorescent cells, producing the catecholamines: serotonin, noradrenaline and dopamine. A search was carried out in Terminologia Histologica and Terminologia Neuroanatomica, with a translation of the terms into Spanish. This was complemented by a search in an English etymological dictionary for the corresponding terms. This research found a difference between the Latin to English translation of the term fluorescens, which has a very different etymological origin to its English meaning. The term Neuron parvum valde fluorescens in Terminologia Histologica and the term Neuron parvum fluorescens in Terminologia Neuroanatomica identify the same structure. The proposal is to replace both terms with Cateconeuron ganglionare, thus affording an accurate description of this type of neuron, considering its location and function. Moreover, it would also be a concordant term in Latin for its incorporation into the Terminologia Neuroanatomica and Terminologia Histologica.


Asunto(s)
Humanos , Ganglios Simpáticos/citología , Histología , Neuroanatomía , Terminología como Asunto
3.
Cells ; 10(8)2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34440833

RESUMEN

RATIONALE: In recent decades, the great potential of human epicardium-derived cells (EPDCs) as an endogenous cell source for cardiac regeneration has been recognized. The limited availability and low proliferation capacity of primary human EPDCs and phenotypic differences between EPDCs obtained from different individuals hampers their reproducible use for experimental studies. AIM: To generate and characterize inducible proliferative adult human EPDCs for use in fundamental and applied research. METHODS AND RESULTS: Inducible proliferation of human EPDCs was achieved by doxycycline-controlled expression of simian virus 40 large T antigen (LT) with a repressor-based lentiviral Tet-On system. In the presence of doxycycline, these inducible EPDCs (iEPDCs) displayed high and long-term proliferation capacity. After doxycycline removal, LT expression ceased and the iEPDCs regained their cuboidal epithelial morphology. Similar to primary EPDCs, iEPDCs underwent an epithelial-to-mesenchymal transition (EMT) after stimulation with transforming growth factor ß3. This was confirmed by reverse transcription-quantitative polymerase chain reaction analysis of epithelial and mesenchymal marker gene expression and (immuno) cytochemical staining. Collagen gel-based cell invasion assays demonstrated that mesenchymal iEPDCs, like primary EPDCs, possess increased invasion and migration capacities as compared to their epithelial counterparts. Mesenchymal iEPDCs co-cultured with sympathetic ganglia stimulated neurite outgrowth similarly to primary EPDCs. CONCLUSION: Using an inducible LT expression system, inducible proliferative adult human EPDCs were generated displaying high proliferative capacity in the presence of doxycycline. These iEPDCs maintain essential epicardial characteristics with respect to morphology, EMT ability, and paracrine signaling following doxycycline removal. This renders iEPDCs a highly useful new in vitro model for studying human epicardial properties.


Asunto(s)
Pericardio/metabolismo , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Doxiciclina/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ganglios Simpáticos/citología , Ganglios Simpáticos/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Humanos , Modelos Biológicos , Neuritas/fisiología , Comunicación Paracrina/efectos de los fármacos , Pericardio/citología , Factor de Crecimiento Transformador beta3/farmacología
4.
Hypertension ; 76(6): 1915-1923, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33040619

RESUMEN

Neurohumoral activation is an early hallmark of cardiovascular disease and contributes to the etiology of the pathophysiology. Stellectomy has reemerged as a positive therapeutic intervention to modify the progression of dysautonomia, although the biophysical properties underpinning abnormal activity of this ganglia are not fully understood in the initial stages of the disease. We investigated whether stellate ganglia neurons from prehypertensive SHRs (spontaneously hypertensive rats) are hyperactive and describe their electrophysiological phenotype guided by single-cell RNA sequencing, molecular biology, and perforated patch clamp to uncover the mechanism of abnormal excitability. We demonstrate the contribution of a plethora of ion channels, in particular inhibition of M current to stellate ganglia neuronal firing, and confirm the conservation of expression of key ion channel transcripts in human stellate ganglia. We show that hyperexcitability was curbed by M-current activators, nonselective sodium current blockers, or inhibition of Nav1.1-1.3, Nav1.6, or INaP. We conclude that reduced activity of M current contributes significantly to abnormal firing of stellate neurons, which, in part, contributes to the hyperexcitability from rats that have a predisposition to hypertension. Targeting these channels could provide a therapeutic opportunity to minimize the consequences of excessive sympathetic activation.


Asunto(s)
Regulación hacia Abajo , Ganglios Simpáticos/citología , Hipertensión/fisiopatología , Neuronas/fisiología , Animales , Expresión Génica , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Masculino , Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas Endogámicas SHR , Ratas Wistar
5.
Nature ; 583(7816): 441-446, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32641826

RESUMEN

Connections between the gut and brain monitor the intestinal tissue and its microbial and dietary content1, regulating both physiological intestinal functions such as nutrient absorption and motility2,3, and brain-wired feeding behaviour2. It is therefore plausible that circuits exist to detect gut microorganisms and relay this information to areas of the central nervous system that, in turn, regulate gut physiology4. Here we characterize the influence of the microbiota on enteric-associated neurons by combining gnotobiotic mouse models with transcriptomics, circuit-tracing methods and functional manipulations. We find that the gut microbiome modulates gut-extrinsic sympathetic neurons: microbiota depletion leads to increased expression of the neuronal transcription factor cFos, and colonization of germ-free mice with bacteria that produce short-chain fatty acids suppresses cFos expression in the gut sympathetic ganglia. Chemogenetic manipulations, translational profiling and anterograde tracing identify a subset of distal intestine-projecting vagal neurons that are positioned to have an afferent role in microbiota-mediated modulation of gut sympathetic neurons. Retrograde polysynaptic neuronal tracing from the intestinal wall identifies brainstem sensory nuclei that are activated during microbial depletion, as well as efferent sympathetic premotor glutamatergic neurons that regulate gastrointestinal transit. These results reveal microbiota-dependent control of gut-extrinsic sympathetic activation through a gut-brain circuit.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Intestinos/inervación , Neuronas/fisiología , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/fisiología , Animales , Disbiosis/fisiopatología , Femenino , Ganglios Simpáticos/citología , Ganglios Simpáticos/fisiología , Motilidad Gastrointestinal , Vida Libre de Gérmenes , Intestinos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Vías Nerviosas/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transcriptoma
6.
J Mol Cell Cardiol ; 143: 26-37, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32277975

RESUMEN

RATIONALE: After cardiac damage, excessive neurite outgrowth (sympathetic hyperinnervation) can occur, which is related to ventricular arrhythmias/sudden cardiac death. Post-damage reactivation of epicardium causes epicardium-derived cells (EPDCs) to acquire a mesenchymal character, contributing to cardiac regeneration. Whether EPDCs also contribute to cardiac re/hyperinnervation, is unknown. AIM: To investigate whether mesenchymal EPDCs influence cardiac sympathetic innervation. METHODS AND RESULTS: Sympathetic ganglia were co-cultured with mesenchymal EPDCs and/or myocardium, and neurite outgrowth and sprouting density were assessed. Results showed a significant increase in neurite density and directional (i.e. towards myocardium) outgrowth when ganglia were co-cultured with a combination of EPDCs and myocardium, as compared to cultures with EPDCs or myocardium alone. In absence of myocardium, this outgrowth was not directional. Neurite differentiation of PC12 cells in conditioned medium confirmed these results via a paracrine effect, in accordance with expression of neurotrophic factors in myocardial explants co-cultured with EPDCs. Of interest, EPDCs increased the expression of nerve growth factor (NGF) in cultured, but not in fresh myocardium, possibly due to an "ischemic state" of cultured myocardium, supported by TUNEL and Hif1α expression. Cardiac tissues after myocardial infarction showed robust NGF expression in the infarcted, but not remote area. CONCLUSION: Neurite outgrowth and density increases significantly in the presence of EPDCs by a paracrine effect, indicating a new role for EPDCs in the occurrence of sympathetic re/hyperinnervation after cardiac damage.


Asunto(s)
Corazón/inervación , Miocardio/metabolismo , Pericardio/metabolismo , Fibras Simpáticas Posganglionares/fisiología , Animales , Apoptosis/genética , Línea Celular Tumoral , Células Cultivadas , Ganglios Simpáticos/citología , Ganglios Simpáticos/metabolismo , Humanos , Ratones , Miocardio/citología , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Proyección Neuronal
7.
PLoS One ; 15(2): e0218643, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32017764

RESUMEN

Postganglionic sympathetic neurons and satellite glial cells are the two major cell types of the peripheral sympathetic ganglia. Sympathetic neurons project to and provide neural control of peripheral organs and have been implicated in human disorders ranging from cardiovascular disease to peripheral neuropathies. Here we show that satellite glia regulate synaptic activity of cultured postnatal sympathetic neurons, providing evidence for local ganglionic control of sympathetic drive. In addition to modulating neuron-to-neuron cholinergic neurotransmission, satellite glia promote synapse formation and contribute to neuronal survival. Examination of the cellular architecture of the rat sympathetic ganglia in vivo shows this regulation of neuronal properties takes place during a developmental period in which neuronal morphology and density are actively changing and satellite glia enwrap sympathetic neuronal somata. Cultured satellite glia make and release factors that promote neuronal activity and that can partially rescue the neurons from cell death following nerve growth factor deprivation. Thus, satellite glia play an early and ongoing role within the postnatal sympathetic ganglia, expanding our understanding of the contributions of local and target-derived factors in the regulation of sympathetic neuron function.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Ganglios Simpáticos/fisiología , Neuroglía/metabolismo , Transmisión Sináptica , Animales , Células Cultivadas , Neuronas Colinérgicas/fisiología , Femenino , Ganglios Simpáticos/citología , Masculino , Neuroglía/fisiología , Ratas , Ratas Sprague-Dawley
8.
Nature ; 579(7797): 101-105, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32103180

RESUMEN

Mating and egg laying are tightly cooordinated events in the reproductive life of all oviparous females. Oviposition is typically rare in virgin females but is initiated after copulation. Here we identify the neural circuitry that links egg laying to mating status in Drosophila melanogaster. Activation of female-specific oviposition descending neurons (oviDNs) is necessary and sufficient for egg laying, and is equally potent in virgin and mated females. After mating, sex peptide-a protein from the male seminal fluid-triggers many behavioural and physiological changes in the female, including the onset of egg laying1. Sex peptide is detected by sensory neurons in the uterus2-4, and silences these neurons and their postsynaptic ascending neurons in the abdominal ganglion5. We show that these abdominal ganglion neurons directly activate the female-specific pC1 neurons. GABAergic (γ-aminobutyric-acid-releasing) oviposition inhibitory neurons (oviINs) mediate feed-forward inhibition from pC1 neurons to both oviDNs and their major excitatory input, the oviposition excitatory neurons (oviENs). By attenuating the abdominal ganglion inputs to pC1 neurons and oviINs, sex peptide disinhibits oviDNs to enable egg laying after mating. This circuitry thus coordinates the two key events in female reproduction: mating and egg laying.


Asunto(s)
Copulación/fisiología , Drosophila melanogaster/fisiología , Vías Nerviosas/fisiología , Oviposición/fisiología , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Femenino , Ganglios Simpáticos/citología , Masculino , Péptidos/metabolismo , Células Receptoras Sensoriales/metabolismo , Abstinencia Sexual/fisiología
9.
Pharmacol Res Perspect ; 7(3): e00471, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31065376

RESUMEN

Metabotropic glutamate receptors (mGluRs) are class C G protein coupled receptors with widespread expression in the central nervous system. There are eight mGluRs in the mammalian genome. Research on mGluRs relies on the availability of selective compounds. While many selective allosteric compounds have been described, selectivity of orthosteric agonists and antagonists has been more difficult due to the similarity of the glutamate binding pocket across the mGluR family. LY341495 has been used for decades as a potent and selective group II mGluR antagonist. The selectivity of LY341495 was investigated here between mGluR2, a group II mGluR, and mGluR4, a group III receptor, heterologously expressed in adult rat sympathetic neurons from the superior cervical ganglion (SCG), which provides a null-mGluR background upon which mGluRs were examined in isolation. The compound does in fact selectively inhibit mGluR2 over mGluR4, but in such a way that it makes signaling of the two receptors more difficult to distinguish. The glutamate potency of mGluR2 is about 10-fold higher than mGluR4. 50 nmol L-1 LY341495 did not alter mGluR4 signaling but shifted the mGluR2 glutamate dose-response about 10-fold, such that it overlapped more closely with that of mGluR4. Increasing the LY341494 dose to 500 nmol L-1 further shifted the glutamate dose-response of mGluR2 by another ~10-fold, but also shifted that of mGluR4 similarly. Thus, while glutamate is a moderately selective agonist of mGluR2 over mGluR4 when applied alone, in the presence of increasing concentrations of LY341495, this selectivity of glutamate is lost.


Asunto(s)
Aminoácidos/farmacología , Receptores de Glutamato Metabotrópico/metabolismo , Ganglio Cervical Superior/metabolismo , Xantenos/farmacología , Animales , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Ganglios Simpáticos/citología , Ganglios Simpáticos/efectos de los fármacos , Ganglios Simpáticos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratas , Receptores de Glutamato Metabotrópico/genética , Transducción de Señal/efectos de los fármacos , Ganglio Cervical Superior/citología , Ganglio Cervical Superior/efectos de los fármacos
10.
J Comp Neurol ; 527(16): 2742-2760, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31021409

RESUMEN

Celiac ganglia are important sites of signal integration and transduction. Their complex neurochemical anatomy has been studied extensively in guinea pigs but not in mice. The goal of this study was to provide detailed neurochemical characterization of mouse celiac ganglia and noradrenergic nerves in two target tissues, spleen and stomach. A vast majority of mouse celiac neurons express a noradrenergic phenotype, which includes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, and the norepinephrine transporter. Over 80% of these neuron also express neuropeptide Y (NPY), and this coexpression is maintained by dissociated neurons in culture. Likewise, TH and NPY were colocalized in noradrenergic nerves throughout the spleen and in stomach blood vessels. Somatostatin was not detected in principal neurons but did occur in small, TH-negative cells presumed to be interneurons and in a few varicose nerve fibers. Cholinergic nerves provided the most abundant input to the ganglia, and small percentages of these also contained nitric oxide synthase or vasoactive intestinal polypeptide. A low-to-moderate density of nerves also stained separately for the latter markers. Additionally, nerve bundles and varicose nerve fibers containing the sensory neuropeptides, calcitonin gene-related polypeptide, and substance P, occurred at variable density throughout the ganglia. Collectively, these findings demonstrate that principal neurons of mouse celiac ganglia have less neurochemical diversity than reported for guinea pig and other species but receive input from nerves expressing an array of neurochemical markers. This profile suggests celiac neurons integrate input from many sources to influence target tissues by releasing primarily norepinephrine and NPY.


Asunto(s)
Ganglios Simpáticos/citología , Ganglios Simpáticos/metabolismo , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/metabolismo , Células Cultivadas , Femenino , Inmunohistoquímica , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/citología , Neuronas/metabolismo , Nervios Periféricos/citología , Nervios Periféricos/metabolismo , Bazo/citología , Bazo/metabolismo
11.
Vet Pathol ; 56(2): 244-247, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30286693

RESUMEN

Equine dysautonomia (grass sickness) is characterized by autonomic neuronal degeneration and is often fatal. As outbreaks occur, rapid diagnosis is essential but confirmation currently requires histological examination. This study evaluated diagnostic accuracy of cytological examination of cranial cervical ganglion (CCG) scrapings for dysautonomia diagnosis. CCG smears from 20 controls and 16 dysautonomia cases were stained with May-Grünwald Giemsa (MGG), hematoxylin and eosin (HE), and cresyl fast violet (CFV), with HE-stained histological sections of CCG as gold standard for diagnosis. Examining all 3 stains together, the sensitivity and specificity were 100%. Occasional individual smears (4/107, 3.7%) were nondiagnostic due to low cellularity, and in a few individual smears the final diagnosis was correct but more tentative (CFV: 5/33 [15.1%], HE: 2/34 [5.9%], and MGG: 4/36 [11.1%]), due to low cellularity or suboptimal cell morphology. CCG cytology was considered reliable for rapid postmortem diagnosis of equine dysautonomia, particularly using MGG.


Asunto(s)
Ganglios Simpáticos/patología , Enfermedades de los Caballos/diagnóstico , Disautonomías Primarias/veterinaria , Animales , Estudios de Casos y Controles , Colorantes , Ganglios Simpáticos/citología , Enfermedades de los Caballos/patología , Caballos , Disautonomías Primarias/diagnóstico , Disautonomías Primarias/patología
12.
Sci Rep ; 8(1): 12865, 2018 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-30150715

RESUMEN

Sympathetic neurons (SNs) are an essential component of the autonomic nervous system. They control vital bodily functions and are responsible for various autonomic disorders. However, obtaining SNs from living humans for in vitro study has not been accomplished. Although human pluripotent stem cell (hPSC)-derived SNs could be useful for elucidating the pathophysiology of human autonomic neurons, the differentiation efficiency remains low and reporter-based cell sorting is usually required for the subsequent pathophysiological analysis. To improve the efficiency, we refined each differentiation stage using PHOX2B::eGFP reporter hPSC lines to establish a robust and efficient protocol to derive functional SNs via neuromesodermal progenitor-like cells and trunk neural crest cells. Sympathetic neuronal progenitors could be expanded and stocked during differentiation. Our protocol can selectively enrich sympathetic lineage-committed cells at high-purity (≈80%) from reporter-free hPSC lines. Our system provides a platform for diverse applications, such as developmental studies and the modeling of SN-associated diseases.


Asunto(s)
Diferenciación Celular , Neuronas/citología , Células Madre Pluripotentes/citología , Sistema Nervioso Simpático/citología , Línea Celular , Ganglios Simpáticos/citología , Expresión Génica , Genes Reporteros , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Cell Rep ; 23(1): 11-22, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29617653

RESUMEN

Throughout the developing nervous system, considerable synaptic re-organization takes place as postsynaptic neurons extend dendrites and incoming axons refine their synapses, strengthening some and eliminating others. It is well accepted that these processes rely on synaptic activity; however, the mechanisms that lead to this developmental reorganization are not fully understood. Here, we explore the regulation of cap-dependent translation, a mechanism known to play a role in synaptic growth and plasticity. Using sympathetic ganglia in α3 nicotinic acetylcholine receptor (nAChR)-knockout (KO) mice, we establish that electrophysiologically silent synapses between preganglionic axons and postsynaptic sympathetic neurons do not refine, and the growth of dendrites and the targeting of synapses on postsynaptic neurons are impaired. Remarkably, genetically removing 4E-BP, a suppressor of cap-dependent translation, from these α3 nAChR-KO mice largely restores these features. We conclude that synaptic connections can re-organize and refine without postsynaptic activity during post-natal development when 4E-BP-regulated cap-dependent translation is enhanced.


Asunto(s)
Proteínas Portadoras/genética , Fosfoproteínas/genética , Sinapsis/metabolismo , Potenciales Sinápticos , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Ciclo Celular , Factores Eucarióticos de Iniciación , Ganglios Simpáticos/citología , Ganglios Simpáticos/metabolismo , Ganglios Simpáticos/fisiología , Ratones , Receptores Nicotínicos/genética , Sinapsis/fisiología
14.
Cell Death Dis ; 9(2): 247, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445148

RESUMEN

Malformations of the sympathetic nervous system have been associated with cardiovascular instability, gastrointestinal dysfunction, and neuroblastoma. A better understanding of the factors regulating sympathetic nervous system development is critical to the development of potential therapies. Here, we have uncovered a temporal requirement for the LIM homeodomain transcription factor ISL1 during sympathetic nervous system development by the analysis of two mutant mouse lines: an Isl1 hypomorphic line and mice with Isl1 ablated in neural crest lineages. During early development, ISL1 is required for sympathetic neuronal fate determination, differentiation, and repression of glial differentiation, although it is dispensable for initial noradrenergic differentiation. ISL1 also plays an essential role in sympathetic neuron proliferation by controlling cell cycle gene expression. During later development, ISL1 is required for axon growth and sympathetic neuron diversification by maintaining noradrenergic differentiation, but repressing cholinergic differentiation. RNA-seq analyses of sympathetic ganglia from Isl1 mutant and control embryos, together with ISL1 ChIP-seq analysis on sympathetic ganglia, demonstrated that ISL1 regulates directly or indirectly several distinct signaling pathways that orchestrate sympathetic neurogenesis. A number of genes implicated in neuroblastoma pathogenesis are direct downstream targets of ISL1. Our study revealed a temporal requirement for ISL1 in multiple aspects of sympathetic neuron development, and suggested Isl1 as a candidate gene for neuroblastoma.


Asunto(s)
Neuronas Adrenérgicas/metabolismo , Neuronas Colinérgicas/metabolismo , Ganglios Simpáticos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas con Homeodominio LIM/genética , Neuroblastoma/genética , Factores de Transcripción/genética , Neuronas Adrenérgicas/citología , Animales , Secuencia de Bases , Ciclo Celular/genética , Diferenciación Celular , Linaje de la Célula/genética , Proliferación Celular , Neuronas Colinérgicas/citología , Embrión de Mamíferos , Ganglios Simpáticos/citología , Humanos , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Transgénicos , Cresta Neural/citología , Cresta Neural/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neurogénesis/genética , Cultivo Primario de Células , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/metabolismo
15.
Adv Gerontol ; 31(6): 937-942, 2018.
Artículo en Ruso | MEDLINE | ID: mdl-30877824

RESUMEN

Sympathetic innervation of the stomach is carried out by the prevertebral ganglia of the solar plexus. The localization and neurochemical composition of neurons innervating the stomach in postnatal ontogenesis in rats was studied using the method of retrograde axon transport of Fast Blue. In all animals, the celiac ganglia had more labeled neurons compared to the superior mesenteric ganglion. The number of labeled neurons increased in the first 10 days of life and then did not change until the senescence. All labeled neurons innervating the stomach contain the catecholamine synthesis enzyme, tyrosine hydroxylase. The proportion of labeled neuropeptide Y-immunopositive neurons did not change in the development, the percentage of labeled calbindin-immunoreactive neurons decreased in the first month of life.


Asunto(s)
Envejecimiento/fisiología , Ganglios Simpáticos/citología , Estómago/inervación , Animales , Neuronas/metabolismo , Neuropéptido Y , Ratas , Tirosina 3-Monooxigenasa
16.
Proc Natl Acad Sci U S A ; 114(45): 11980-11985, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078343

RESUMEN

Most of the enteric nervous system derives from the "vagal" neural crest, lying at the level of somites 1-7, which invades the digestive tract rostro-caudally from the foregut to the hindgut. Little is known about the initial phase of this colonization, which brings enteric precursors into the foregut. Here we show that the "vagal crest" subsumes two populations of enteric precursors with contrasted origins, initial modes of migration, and destinations. Crest cells adjacent to somites 1 and 2 produce Schwann cell precursors that colonize the vagus nerve, which in turn guides them into the esophagus and stomach. Crest cells adjacent to somites 3-7 belong to the crest streams contributing to sympathetic chains: they migrate ventrally, seed the sympathetic chains, and colonize the entire digestive tract thence. Accordingly, enteric ganglia, like sympathetic ones, are atrophic when deprived of signaling through the tyrosine kinase receptor ErbB3, while half of the esophageal ganglia require, like parasympathetic ones, the nerve-associated form of the ErbB3 ligand, Neuregulin-1. These dependencies might bear relevance to Hirschsprung disease, with which alleles of Neuregulin-1 are associated.


Asunto(s)
Sistema Nervioso Entérico/citología , Ganglios Simpáticos/citología , Tracto Gastrointestinal/embriología , Cresta Neural/citología , Neurregulina-1/genética , Receptor ErbB-3/genética , Células de Schwann/citología , Animales , Embrión de Pollo , Tracto Gastrointestinal/inervación , Enfermedad de Hirschsprung/genética , Ratones , Neurregulina-1/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Receptor ErbB-3/metabolismo , Nervio Vago/citología
17.
Cell Tissue Res ; 370(2): 227-241, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28936781

RESUMEN

Neuron subtypes of the mature nervous system differ in the expression of characteristic marker genes while they share the expression of generic neuronal genes. The regulatory logic that maintains subtype-specific and pan-neuronal genes is not well understood. To begin to address this issue, we analyze RNA sequencing results from whole sympathetic ganglia and single sympathetic neurons in the mouse. We focus on gene products involved in the neuronal cytoskeleton, neurotransmitter synthesis and storage, transmitter release and reception and electrical information processing. We find a particular high correlation in the expression of stathmin 2 and several members of the tubulin beta family, classical pan-neuronal markers. Noradrenergic transmitter-synthesizing enzymes and transporters are also well correlated in their cellular transcript levels. In addition, noradrenergic marker transcript levels correlate well with selected pan-neuronal markers. Such a correlation in transcript levels is also seen between a number of selected ion channel, receptor and synaptic protein genes. These results provide the foundation for the analyses of the coordinated expression of downstream target genes in nerve cells.


Asunto(s)
Ganglios Simpáticos/citología , Neuronas/metabolismo , Sistema Nervioso Simpático/citología , Transcriptoma , Animales , Ganglios Simpáticos/metabolismo , Canales Iónicos/genética , Ratones , Neuronas/citología , Proteínas SNARE/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Estatmina/genética , Sistema Nervioso Simpático/metabolismo , Sinaptotagminas/genética , Tubulina (Proteína)/genética , Proteínas de Unión al GTP rab3/genética
18.
J Mol Neurosci ; 63(1): 50-57, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28762133

RESUMEN

Intervertebral disc diseases (IVDDs) form a group of a vertebral column disorders affecting a large number of people worldwide. It is estimated that approximately 30% of individuals at the age of 35 and approximately 90% of individuals at the age of 60 and above will have some form of disc-affecting pathological changes leading to disc herniation, prolapse and degeneration as well as discogenic pain. Here, we aimed to establish the origins and neurochemical characteristics of porcine intervertebral disc sympathetic innervation involved in pain signalling in IVDD patients. Pigs were given an injection of the Ominipaque contrast agent and Fast Blue (FB) retrograde tracer into the L4-L5 intervertebral disc and euthanized at 2, 1, and 3 months post injection. Following euthanasia, bilateral sympathetic chain ganglia (SChG) Th13 to C1 were collected. The presence, distribution and neurochemical characteristics of retrogradely labelled SChG neurons were examined. The majority (88.8%) of all FB+ cells were found in the L3-L5 SChG. Most FB+ neurons stained for dopamine beta hydroxylase (DBH); one-third to one-quarter stained for somatostatin (SOM), neuropeptide Y (NPY) or leu-enkephalin (LENK); and only a few stained for galanin (GAL). Compared with the control, the greatest decline in neurochemical immunostaining was observed 2 weeks post injection, and the lowest decline was noticed 1 month post injection. Our study, for the first time, provides insight into the complex patterns of intervertebral disc sympathetic innervation and suggests that the best time for neurochemical balance restoration therapy would be 1 month post-injury, when the neuronal concentration of all studied substances is close to the initial physiological level, thus providing favourable conditions for successful recovery.


Asunto(s)
Ganglios Simpáticos/citología , Degeneración del Disco Intervertebral/fisiopatología , Desplazamiento del Disco Intervertebral/fisiopatología , Disco Intervertebral/inervación , Animales , Dopamina beta-Hidroxilasa/metabolismo , Encefalina Leucina/metabolismo , Femenino , Galanina/metabolismo , Ganglios Simpáticos/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Desplazamiento del Disco Intervertebral/metabolismo , Neuronas/clasificación , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Somatostatina/metabolismo , Porcinos
19.
JCI Insight ; 2(2): e90565, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28138563

RESUMEN

The sympathetic nervous system (SNS) accelerates heart rate, increases cardiac contractility, and constricts resistance vessels. The activity of SNS efferent nerves is generated by a complex neural network containing neurons and glia. Gq G protein-coupled receptor (Gq-GPCR) signaling in glial fibrillary acidic protein-expressing (GFAP+) glia in the central nervous system supports neuronal function and regulates neuronal activity. It is unclear how Gq-GPCR signaling in GFAP+ glia affects the activity of sympathetic neurons or contributes to SNS-regulated cardiovascular functions. In this study, we investigated whether Gq-GPCR activation in GFAP+ glia modulates the regulatory effect of the SNS on the heart; transgenic mice expressing Gq-coupled DREADD (designer receptors exclusively activated by designer drugs) (hM3Dq) selectively in GFAP+ glia were used to address this question in vivo. We found that acute Gq-GPCR activation in peripheral GFAP+ glia significantly accelerated heart rate and increased left ventricle contraction. Pharmacological experiments suggest that the glial-induced cardiac changes were due to Gq-GPCR activation in satellite glial cells within the sympathetic ganglion; this activation led to increased norepinephrine (NE) release and beta-1 adrenergic receptor activation within the heart. Chronic glial Gq-GPCR activation led to hypotension in female Gfap-hM3Dq mice. This study provides direct evidence that Gq-GPCR activation in peripheral GFAP+ glia regulates cardiovascular functions in vivo.


Asunto(s)
Ganglios Simpáticos/metabolismo , Frecuencia Cardíaca , Corazón/inervación , Contracción Miocárdica , Neuroglía/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adrenalectomía , Animales , Femenino , Ganglios Simpáticos/citología , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipotensión/metabolismo , Ratones , Ratones Transgénicos , Norepinefrina/metabolismo , Farmacogenética , Receptores Adrenérgicos beta 1/metabolismo , Simpatectomía Química , Sistema Nervioso Simpático/metabolismo
20.
Science ; 354(6314): 893-897, 2016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27856909

RESUMEN

A kinship between cranial and pelvic visceral nerves of vertebrates has been accepted for a century. Accordingly, sacral preganglionic neurons are considered parasympathetic, as are their targets in the pelvic ganglia that prominently control rectal, bladder, and genital functions. Here, we uncover 15 phenotypic and ontogenetic features that distinguish pre- and postganglionic neurons of the cranial parasympathetic outflow from those of the thoracolumbar sympathetic outflow in mice. By every single one, the sacral outflow is indistinguishable from the thoracolumbar outflow. Thus, the parasympathetic nervous system receives input from cranial nerves exclusively and the sympathetic nervous system from spinal nerves, thoracic to sacral inclusively. This simplified, bipartite architecture offers a new framework to understand pelvic neurophysiology as well as development and evolution of the autonomic nervous system.


Asunto(s)
Ganglios Simpáticos/fisiología , Neuronas/fisiología , Sacro/inervación , Sistema Nervioso Simpático/fisiología , Animales , Ganglios Simpáticos/citología , Ganglios Simpáticos/embriología , Ratones , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Sistema Nervioso Parasimpático/anatomía & histología , Sistema Nervioso Parasimpático/embriología , Sistema Nervioso Parasimpático/fisiología , Pelvis/anatomía & histología , Pelvis/embriología , Pelvis/inervación , Sacro/anatomía & histología , Sacro/embriología , Nervios Espinales/fisiología , Sistema Nervioso Simpático/anatomía & histología , Sistema Nervioso Simpático/embriología , Tórax/inervación , Transcripción Genética , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...